Transference for the Erdős–ko–rado Theorem

نویسندگان

  • JÓZSEF BALOGH
  • BHARGAV NARAYANAN
چکیده

For natural numbers n, r ∈ N with n ≥ r, the Kneser graph K(n, r) is the graph on the family of r-element subsets of {1, . . . , n} in which two sets are adjacent if and only if they are disjoint. Delete the edges of K(n, r) with some probability, independently of each other: is the independence number of this random graph equal to the independence number of the Kneser graph itself? We answer this question affirmatively as long as r/n is bounded away from 1/2, even when the probability of retaining an edge of the Kneser graph is quite small. This gives us a random analogue of the Erdős–Ko–Rado theorem since an independent set in the Kneser graph is the same as a uniform intersecting family. To prove our main result, we give some new estimates for the number of disjoint pairs in a family in terms of its distance from an intersecting family; these might be of independent interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A p-part Erdős-Ko-Rado theorem

We prove a p-part extension of the Erdős-Ko-Rado Theorem and suggest several related open problems. For the basic case of two parts we describe two proofs, a combinatorial one and a spectral one.

متن کامل

Elementary Techniques for Erdős–Ko–Rado-like Theorems

The well-known Erdős–Ko–Rado Theorem states that if F is a family of k-element subsets of {1, 2, . . . , n} (n ≥ 2k) satisfying S, T ∈ F ⇒ |S ∩ T | ≥ 1, then |F| ≤ ( n−1 k−1 ) . The theorem also provides necessary and sufficient conditions for attaining the maximum. We present elementary methods for deriving generalizations of the Erdős– Ko–Rado Theorem on several classes of combinatorial objec...

متن کامل

Note Erdős–Ko–Rado from intersecting shadows

A set system is called t-intersecting if every two members meet each other in at least t elements. Katona determined the minimum ratio of the shadow and the size of such families and showed that the Erdős– Ko–Rado theorem immediately follows from this result. The aim of this note is to reproduce the proof to obtain a slight improvement in the Kneser graph. We also give a brief overview of corre...

متن کامل

An algebraic proof of the Erdős-Ko-Rado theorem for intersecting families of perfect matchings

In this paper we give a proof that the largest set of perfect matchings, in which any two contain a common edge, is the set of all perfect matchings that contain a fixed edge. This is a version of the famous Erdős-Ko-Rado theorem for perfect matchings. The proof given in this paper is algebraic, we first determine the least eigenvalue of the perfect matching derangement graph and use properties...

متن کامل

A Colored Version of the Erdős-ko-rado Theorem for Vector Spaces

We study a variant, in the context of the Erdős–Ko–Rado Theorem for vector spaces [4], of an extremal problem of Erdős and Rothschild [3], who considered edge-colorings of graphs avoiding monochromatic triangles. For fixed positive integers r, k and ` with 1 ≤ ` < r, and a family F of linear r-dimensional subspaces in a linear n-dimensional vector space Vn over the fixed finite field GF (q), le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017